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Since we shall be talking about matrices and vectors, let us begin
by saying what we mean by those words:

A vector is an ordered sequence of numbers which obeys certain
rules of addition and multiplication; for instance, (3, 7, 2) is a vector
if it obeys certain rules of combination. Notice that (3, 7, 2) is not
the same as (7, 3, 2) or (2, 3, 7). These are three different vectors.

A matrix is a two-dimensional ordered array of numbers which
obeys certain rules of addition and multiplication; for instance,

2

1

270 20 35 36

is a matrix if it obeys certain rules of combination.
When stated in this way, the definitions sound rather arbitrary.

An ordered sequence of numbers sounds like an abstract and high
brow idea. Actually, this is not true; we are all familiar with ordered
sequences of numbers.

Example 1.--What would you understand by the ordered sequence
of three numbers 12-25-63? That's right, it is Christmas of this
year, in the "civilian" system of month, day, year. ("Militarily,"
it would be 25-12-63).

Example 2.-What would you understand by the ordered sequence
of three numbers 202-772-8956? It is a telephone number in long
distance dialing. The first number, 202, indicates the Washington
area; the 772 is the exchange; and 8956 is the individual's phone
number.

Example 3.--What would you understand by 53--65-13-29.50?
That is a weather report. If you dial the weather-forecast number,
you will be told the temperature, the relative humidity, the wind
velocity, and the barometric pressure, in that order. The voice on
the phone tells you which is which; but if you were sending this in
formation at expensive cable rates, you would send only the numbers.

Example 4.-From cryptography, we have examples like this:

Letter of alphabet ABC D..... Z

Number of occurrences
in 1,000 letters
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DOq.J;,Pz6 nu~e;:telffiJ Jritten as an ordered sequence, (70, 20,
35, ... 2) without mentioning the letters of the alphabet. We
would understand that the first number, 70, was the number of A's;
the next, the number of B's, and so on.

Example 5. Suppose we made a similar count of frequencies of
letters of the alphabet on 1,000 letters each day for a month in this
fashion:

Letter of the Alphabet

70 20 35 36

69 19 31 33

75 21 30 31

2(3, 2, 7) = (6, 4, 14).

UNCLASSIFIED1(b) (3)-P.L. 36-36 1

To multiply a vector by a scalar--a "scalar" is an ordinary num
ber -we multiply each component by the scalar. For instance:

(3, 2, 7) . (1, 2, 3) = 3·1 + 2·2 + 7·3 = 3 + 4 + 21 = 28.

That is what we would naturally expect. Two times a vector means
that we take the vector twice, so that 2(3, 2, 7) = (3,2,7) + (3,2, 7)
= (6,4,14). In general, a(x, y, z) = (ax, ay, az).

To multiply two vectors together, we multiply corresponding com
ponents and add the results. The product of two vectors is there
fore a scalar, or ordinary number. For instance:

All these rules for addition and multiplication agree with the inter
pretation of (x, y, z) as the coordinates of a point. In two dimen
sions we write (3, 1), for instance, for the coordinates of this point:

z

2

1

3

DcBA

2

3

Nov. 1

Date

y

30 65 15 35 30 o . Point
1:3.1)

Inside the "box" we have a two-dimensional array which is "ordered."
We know that the n,h row refers to the nth day of the month, and
the nth column refers to the nt!' letter of the alphabet. This is a 30
by 26 array.

We have not called this two-dimensional array a matrix, because
it is not a matrix yet. Neither is the row (70, 20, 35, ... 2) of the
previous example a vector-not yet. These ordered arrays of num
bers become matrices, or vectors, when they satisfy certain require
ments about how they combine with one another. Here are the
rules:

(1) "Vectors Add Component by Component." Each one of the
numbers that make up a vector, like the 3 of (3, 2, 7) is a "compo
nent;" (3, 2, 7) has three components. To add two vectors, we add
the first component of one vector to the first component of the other
vector, and the result is the first component of the sum vector; so
also for the other components. In symbols this is

--+------'----'------'---x
2 ')

Fig. 1.

The ordered sequence of two numbers (3, 1) indicates the point where
x = 3 and y = 1. The first number always is the value of x and
the second is the value of y, by a standard convention. The vector
(3, 1) tells us to go 3 units of distance to the right and then 1 unit
up. Another way to indicate this point is to use an arrow which
starts at the origin and ends at the point, like this:

y

Poinl

(3, 2, 7) + (1, 2, 3) = (4, 4, 10)
because

(3 + 1 = 4, etc.)

_--j.O<:::::'_-'-_----'__-'-- X
2

and in general

(a, b, c) + (x, y, z) = (a + x, b + y, c + z) Fig. 2.
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Fig. 5.

Notice that multiplying a vector by 2 has doubled its length but has
not changed its direction. The direction is still unchanged when we
multiply by any scalar:

UNCLASSIFIED
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In most applications, particularly the applications that we shall
make here, the direction of a vector is more important than its length.
If we write v for any vector and a for any scalar, or ordinary number,
then av is essentially the same as v, for many purposes. In fact,
when we divide a vector by its own length, so that we have a vector
of length 1 in the same direction, we say that we have "normalized"
the vector. The idea is that it is still essentially the same vector; it
has merely been reduced to a standard form.

Multiplying two vectors we defined above as multiplying corre
sponding components and adding the results, that is,

3

2
x·;.\.

"

0 4 S

Fig. 3.

As the Fig. shows, the vector a is 2 units to the right and 2 units up.
The components of a are (2, 2). The sum v + a, which goes to the
"total" point, has components (5, 3). So we have (3, 1) + (2, 2) =

(5, 3). This agrees with the rule for addition of vectors that we
expressed above, namely, "add corresponding components to find the
corresponding component of the sum." In particular, if we add a
vector to itself, we double each component:

UNCLASSIFIED VISUALIZING A MATRIX

DOW1!-nJd c~a;:Y;;Urtl;3,ector v if we had previously specified
the length and the direction of the arrow. Then v = (3, 1), and we
say that the vector v, thought of as a certain distance in a certain
direction, has been "expres.'ied in terms of its components, (3, 1)."
When we add two "arrows," or directed quantities, we do it by put
ting the beginning of one arrow at the end of the other and connect
ing the new end-point to the origin, in this fashion:

(a, b, c) . (x, y, z) = ax + by + cx- a scalar quantity.

2

o 2 3 oJ

Fig. 4.

6

How does this fit in with our picture of vectors as arrows? First
consider the special case of multiplying a vector by itself:

(a, b, c) • (a, b, c) ~ a' + b' + c'

In two dimensions this is (a, b) . (a, b) = a' + b'.

The arrow is the hypotenuse of a right triangle. By geometry, the
square of the hypotenuse equals the sum of squares of the other two
sides, so that if we measured the lengths of the lines in the picture we
would find that, physically, v' = a' + b'. If we did the same thing
in three dimension, we would find that the lengths of the lines drawn
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Fig. 6.

would agree with v' = a' + b' + CO. Our definition, then, of multi.
plying by adding products of components agrees with the geometry
of the picture.

When two different vectors are multiplied together, we can reason
ably expect the result to depend on the lengths of both vectors and
on the directions of both. The conventional definition is such that
the product of two vectors depends on the product of the two lengths,
and it depends on their directions because it depends on the angle
between them:

L

a. L

Fig. 8.

By the definition of the cosine, the length of the projection of a on u
is a cos H where a = length of a. When a is greater than 1, this is
still true, but we must extend u in order to draw the projection in
this manner:

a

Fig. 9.

Fig. 7.

In our applications we shall limit ourselves almost entirely to the
special case where one of the vectors is of unit length. Call the one
of unit length u and the other one a. Then we have

Perhaps it should be mentioned here that these ideas are not lim
ited to the study of geometrical figures. We all know that a graph
can have many different meanings. A curve or a jagged straight line
sometimes indicates the behavior of the stock market from week to
week; sometimes it indicates daily temperatures or something else
about the weather; and there are many other possibilities. The mean
ing we are interested in here is one that is related to cryptography.
In a few minutes, we shall define this in detail.
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DOC IRsi, we3m~s~s~y~lt~ about the two-dimensional arrays, or
matrices. The example cited previously (p. 32) had 26 columns and
30 rows. When the number of rows is the same as the number of
columns, we have a "square" matrix. These are the easiest to work
with, and they are enough for our purposes now, so we shall talk
from now on about square matrices.

The rule for adding two matrices together is the same as that for
vectors, namely, "add corresponding components to get the corre
sponding component of the sum." For instance, in 2-by-2 matrices
we may have:

Ii;c' I-LL. 1:16- 36I UNCLASSIFIED
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The rule for multiplying by scalars is the same as for vectors 
"multiply each component by the scalar." For instance,

+
,I Z d + wi

Notice that it is reasonable to call these rows and columns "vec
tors," because they are added together and they are multiplied by
scalars according to the vector rule. To see this in detail, let us
write c, and c, without primes for the columns of the abcd matrix and
r[', r,' with primes for the rows of the xyzw matrix. Then the rule
for addition of matrices becomes:

a
yi

l
ax ayl

az awl
b I Ix yl I rl i

: + I = I
di ;z w ,r2'

r ,'
\

r./ I

That is, to get the element on the first row and the second column of
the product, we multiply the first row (of the abcd matrix) by the
second column (of the xyzw matrix). For 3-by-3 matrices or larger
we simply extend the definition:

The rule for multiplying two matrices together is based on the
rule for multiplying two vectors together, but that rule has to be ap
plied several times. To state the rule, we first think of a matrix as
a set of vectors. Row 1 of the abcd matrix, above, is (a, b), which
we can can the vector fl ("row one"). The second row is (c, d),
which we call f,. In the xyzw matrix, column 1 is a vector written

as a column, so we call it c/ c-' x , and likewise c,' = Iy '. Wez, Wi
have written primes on the c's to remind us that these are columns
of the second matrix, not the first. Then the rule for matrix multi
plication is

l

a bl Ix yl

c d! . I z wi . (c,', ci) ~

Ir, . c[' r, . c,'

I r2 • el' r'2 . C./ I

This agrees with the rule for vector addition. We also find that
vector multiplication and matrix multiplication agree when we write
the first matrix as (c

"
c,) and the second one as (c[', cil.

Scalar multiplication of matrices is done by multiplying each com
ponent of the matrix by the scalar. This agrees with vectors multi
plied by scalars:

__ IsrII'
and s (c[, c,) = (SCI, BC,), where s = scalar.

I sr"

In this way we see that we can think of a matrix as a set of vectors, if
we wish. This will be particularly useful in the special case of a
matrix multiplied by a vector, in that order, such as

21141 1'3X4 + 2x61 24
1

5 16 = 1 x 4 + 5 x 61 = I:341

The vector I: I has been changed, by multiplication, into the vector
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In case anyone objects to the idea of a many-dimensional space,
perhaps I should mention that it is only a convenient way of speak
ing. We all know that graphs are a help in exhibiting numerical
facts. When we want to represent a single number, we can mark off
a distance on a line:

UNCLASSIFIED VISUALIZING A MATRIX
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We can write this in vector form as

~t<, i3;-P.L. 86-36 UNCLASSIFIED

I r 1 !

I
' (e'l =

r21
Now let us draw a matrix as a set of vectors.

just mentioned we have
Using the matrix

.)
o

When we want to an represent ordered pair, we draw another line at
right angles to this one and plot the two numbers as we did before,
so (3.1) is

G o

1:'.1)

,)

1

:1

2

Fig. 11.

To represent an ordered triple, such as (3, 1, 4) we draw a third
line at right angles to both of those. This may be shown as:

2 :3 4 ;)

Fig. 10.

The malrix is represenled by the two arrows, taken in lhe order 1, 2.
The same arrows taken in the order 2, 1 would represent the matrix

which is a different matrix because the rows have been interchanged.
To avoid trouble, we shall consider only a problem in which the
order of the rows makes no difference. Then we can think of the
set of n arrows as representing an n-by-n matrix. Of course, this
has to be done in an n-dimensional space.

------:;,!L-----'---=--'-----'----r--- X

CD
y

Fig. 12.

UNCLASSIFIED 40 41 UNCLASSIFIED



We chose the inconvenient factors, vb, because it makes the vector
have unit length. Let us change the vector by multiplying it by
the matrix

2 11
M = I I

11 3[
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DO~Iwq,~ can~~;t~Ri/n~]'e lines at right angles to all of these
three axes, because we live in a three-dimensional physical world.
What we can do is to say, in effect, "and so on." We can visualize
one, two and three dimensions. We then assume that similar things
will be true in other dimensions, and we form a vague mental pic
ture of axes and points. This is not mathematically wrong, in spite
of the vagueness, because the mathematics is in the written equations.
The mental picture, though vague and incomplete, is a help in the
same way that an ordinary graph is a help in grasping all at once
the facts that are stated more exactly in a table of numbers.

To get back to our matrices: when we multiply a vector, say v,
by a matrix M, the result Mv is another vector. Multiplying v by
M has changed v into a new vector. Here is an example. We take
the vector, with two components,

This resultant vector, Mv, is longer than the unit vector, v, but
is almost in the same direction. If we keep the matrix 1, 2 constant
and vary the direction of v, we can find a direction such thatMv is
exactly in the same direction as v. In the case of the matrix which
we used previously, namely,

M = I:

Then M u will be a new vector. This diagram shows the matrix re
presented by the two arrows marked 1 and 2, meaning the first row
and the second row respectively. The original vector, v is the short
vector between 1 and 2. The result, M v, is marked by the asterisk.
(See Fig. 13).

U is such a vector. (See Fig. 14, page 44). Fig. 13.
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]Ii! u is in the same direction as u, but it is 10nJ,(er by a factor of
3.6, approximately. This ratio, 3.6, is the "eigenvalue." When the
original vector is of unit length, as u was, then the eigenvalue is the
length of Mu.

This vector u is one of the "eigenvectors" or "characteristic vec
tors" of the matrix. Every eigenvector is a vector, but it is an eigen
vector, or characteristic vector, only with respect to a certain matrix,
or matrices, of which it is characteristic. "Eigen" in Germ'ln means
"proper" or "belonging to," in this sense. Usually a matrix which
has n rows and n columns also has n eigenvectors, each with its own

1

2 I!
eigenvalue (increase in length). The matrix I has the eigen-

!1 3
vector (.526, .851) with eigenvalue 3.62, shown in FiJ,(. 2, and a
second one, (.851, .526) with eigenvalue 1.382, not shown.

A natural question to ask is, Do these eigenvectors and eigenvalues
have any practical use? From the diagram they look like a mathe
matical freak. The vector u happens to be pointed in just the right
direction so that when we multiply it by M it is still in the same
direction. Is this anything more than a coincidence?

The answer is, Yes. These special vectors have physical meaning
and practical uses. The most concrete interpretations occur in phys
ics, where the elements of the matrix are usually not numbers but
differential operators. We can write D to mean "differentiate with
respect to time, t," and D' to mean "differentiate twice," and so on.
Then the forces acting on a set of physical objects will be given by
several equations in which the variables are coordinates representing
the positions of various objects, and these are shown with powers of
D before them. So we can write a matrix involving powers of D
and ordinary numbers. The eigenvectors of this matrix will describe
certain important features of the motion of the system in which the
eigenvectors will be parameters. For instance, suppose we have two
weights, of mass 1 kg and 2 kg, which slide without friction on a
horizontal surface; and suppose these weiJ,(hts are attached to springs
in this way:

(2. ])
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Fig. 14.

K~stl'el1gth of spring

Fig. 15.
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p" 1.000 Pl~ .050 Pl~ .975

2 P21 .050 P'. 1.000 P" .007

P~l .975 PJ~ .007 p,:~ 1.000

(Notice symmetry)
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of typical waves of the ocean, then a storm could set up a steady
vibration that might build up to the point of being dangerous. Ship
designers have to avoid structures with that frequency of vibration.
Likewise, in airplane design, vibration analysis is carefully studied
by specialists.

One application to cryptanalysis is as follows. We start with some
set of frequency counts, such as the frequencies of different letters
of the alphabet at different positions in the cipher text, or something
like that. From these counts we drive a set of columns of figures.
How this is done depends on the nature of the cipher we are studying.
We compare these columns in pairs to see whether or not they seem
to be different versions of the same "ideal" column and differ only
in random fluctuations. If there is a probability p that columns i
and j are alike, then the probability is also p that column j is like
column i. We can write this as Pij = Pji. If we write these P's
with i as row heading and j as column heading, we have a symmetri
cal matrix. A very simple example is this:

------,-------,-------c=-,

UNCLASSIFIED VISUALIZING A MATRIX

DQG;cIID-~ght.aaaati /m3ion, a centimeters to the left, and
weJght ~ in the same way, b centimeters to the right, and we release
them. If we choose a and b at random, the weights will move to
and fro in an irregular, complicated, and continuous m'inner. But
if we choose a and b correctly (in fact the correct choice is a = 1
centimeter to the left and b = 1 centimeter to the right) they will
vibrate in a simple, regular way, like this:

Fig. 16.

The equations representing the force exerted by the springs at each
time, t, and the resulting displacements of the two masses can be
written as a matrix involving the time-derivative D:

where XI and x, are respectively the displacements, to the right, of
mass 1 and of mass 2. The eigenvectors, also called eigenfunctions
in such problems, of this matrix are functions of time which describe
the mode of vibration pictured above, and a similar but different
mode, not shown. The eigenvalues are the corresponding frequencies
of vibration. Similar situations, but more complicated, are of great
practical importance. For instance, instead of the two sliding
weights we may have two heavy fixtures on a ship, connected by
metal beams with some degree of flexibility. If this system has a
mode of vibration with a frequency equal to the natural frequency

o
.9

.9

ALIKE

.9---0 '-:~.9
o .9 0

.7 0 .9

.9 ? .7
OPPOSITE

The array of 9 numbers is a square matrix. It can be plotted in 3
dimensional space as a set of 3 vectors, as we did before. Each
vector would represent a row of the matrix, or it could represent a
column if we prefer, because of the symmetry. In practical cases,
the matrix would have more than 3 rows and columns; in fact 30
by-30 would be more typical than 3-by-3. Also the elements would
not all be very dose to 1 or very dose to 0; they could have any
value in between.

In this large matrix some columns would be similar to one another_
The remaining columns would all be approximately inverses or oppo
sites of the first set of columns, like this:

- 21 IXII ~ 0

+ 4 X22D22

!D' + 3

UNCLASSIFIED 46 47 UNCLASSIFIED



I)"ilill

Fig. 18.

est value----a "projection" being the projection of one of the points
onto the line:

UNCLASSIFIED'-' (-I p. n"r II'_'~'I -J - • ---'. O'.J--J:;

From each point we drop a perpendicular to the line; from the point
where this perpendicular meets the line to the origin 0 is a segment
of the line called the projection of the point. We do this for all
points in both clusters. We square the numbers representing the
lengths of the projections in order to get rid of minus signs, and then
we add these squares. To indicate the position of the line, we use
a vector u of unit length, in that direction.

In a geometrical picture, how do we usually represent the sum of
squares of numbers? We do it by drawing the numbers as sides of a
right triangle. The square of the length of the hypotenuse is equal
to the sum of the squares of the other two sides. We saw it pre
viously in two dimensions. In three dimensions it still holds as a
sum of 3 squares:

o cluster
® ®

UNCLASSIFIED VISliALTZIN(; A MATRIX

DQ&f tJ;li~ 4-d~§sJ~ 9pl~each column being one point. The
points representing the first, third, and fourth columns will be close
together. The point representing the second column will be far
away. if there were other columns like column 2, they would be
close together but all separated from the set consisting of columns
1, 3, and 4. We would have two clusters of points. We must sepa
rate these clusters; in cases where the two types are not very obvi
ously different the separation is difficult In fact, what we want to
do is to find the approximate center of each cluster. These centers
will be close to the two ideal points that represent the two ideal
types of columns, one the inverse of the other, of which the actual
columns are approximate versions. To accomplish this separation,
we first make a change of origin, that is, we decide to measure all
distances from the center of gravity of all the points. In the example,
this center would be close to (1/2, 1/2, 1/2, 1/2). The two clusters
are on opposite sides of this center of gravity, and we wish to find a
line which will go through the center of gravity and will also pass
through the approximate centers of the clusters. Here is a simplified
figure, in two dimensions, which is merely suggestive, of course:

@ 0

clu~ler ®

Fig. 17.

It is sufficient to find the direction of this line, rather than the
actual centers of the clusters, because the direction of the vector is
more important than its length. In fact, in this case we know the
length before we start; it will be vn for n points in n dimensions.
So we rotate the line, letting it pass through the origin all the time,
until we find the best position. We shall define the best position,
where it "goes through the clusters" in a sense, as being that posi
tion in which the sum of the squares of the projections has the great- Fig. 19.
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clusters. So we do this: we set up a matrix 111. by using the coordi
nates of the given cluster-points. If these points are pI, p" ... ,
then 111. is

UNCLASSIFIED VISUALIZING A MATRIX

DOC;::n~e:than4~i~e§t§/w~ cannot draw the picture, but the idea
remains valid. Notice that it makes no difference which number we
mention first; so also, it makes no difference which axis we call x and
which one, y; x' + y' + z, = y' + z, + x', etc.

In the example we are considering, we wish to draw a picture rep
resenting the sum of the squares of the "projections" mentioned
above. We must use each of the projections as a side of a right tri
angle. To draw this, we rotate the projections onto the axis, one
projection to each axis in any order, thus:

1\1.

Ill::: ("I-P.L. 'J6-", I

p,:
I

a square matrix.

I·

UNCLASSIFIED

\,
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Point 1

............_--------.....-------
rotated projpctinn

To find the best postion of u, meaning the position that maximizes
the sum of the squares of the projections, we leave 111. fixed and vary
U by rotating it. We wish to maximize the length of the vector 111. U

by varying u. Instead, we may just as well say that we wish to
maximize the square of this length, because the square of a positive
number is greatest when the number itself is greatest, and vice versa.

What is the square of the length of any vector, say, the vector a?
In terms of its components this vector is, say, (ai, a" all), and the
square of its length was shown before to be ai' + a,' + a,,'. We can
write this in matrix form as:

Length squared ~ (a], a" all)

When a is written as a vertical column, then the row fonn of the
same components is a as a row, called "a transpose," and vice versa.
The transpose of any matrix, or vector, is formed from the matrix
or vector by writing down instead of across, so that rows become
columns and columns become rows, as in:

The square of the length of any vector a can be written than as "a
times a transpose," which is in symbols aT a. Then the square of
the length of Mu is (Mu)"' Mu. It can ea.'\ily be shown that the
transpose of a matrix product is the product of the transposes taken
in reversed order; in symbols, (1\1.uf = uTMT. So the square of
the length tha t we wish to maximize is u7' 1\1.'1' 111.u. A symmetric

Fig. 20.

These segments on the axis-the rotated projections-are the sides
of right triangles, because the axes are at right angles to one another.
Then the "hypotenuse" or diagonal, the hypotenuse of the last tri
angle, represents the sum of the squares that we desire. It is the
longest diagonal, from the origin to the farthest corner, of a rectan
gular box whose sides are these rotated projections. The farthest
corner is the only one that does not lie in any coordinate plane.

Now it is a fact that this diagonal of the box, when we think of
it as a vector from the origin, is what we had before when we multi
plied a vector by a matrix in the form 111. v. As indicated before,
multiplication by 111. changes v into the new vector 111. v, which is
the diagonal. The matrix 111. was represented by a set of n vectors,
one vector standing for each row of the matrix. Now we have a
given matrix, whose rows (or columns) are the points of the two
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qQ~~ Re:sam~a~J§,1?tl~l'ose, because rows equal columns
in symmetric matrices: M T

= M when M is symmetric, as here.
So the quality we wish to maximize is uT M2 u. Of course, M' is
simply another matrix like M, also of n rows and n columns. We
ask, what vector, u, will make uT M' u have its greatest value?

The answer is, the desired value of u is the eigenvector of M' that
goes wit.h its largest eigenvalue. The n-by-n matrix M' normally
has n eigenvectors and n eigenvalues, one eigenvector for each eigen
value. If we find all the eigenvalues of M" pick the one that is al
gebraically largest, and find the corresponding eigenvector, say e"
then that e, is the desired value for u. It maximizes the expression
we had before: e, M' e, is larger than uT Ai' u for every u other
than e,.

This maximizing property is true for any matrix, say A. If ej
denotes the so-called "principal" eigenvector of A, meaning the one
corres~onding to the l~rgest eigenvalue, then e,T A e, is larger than
any x A x, where x IS a vector ot.her than e,. The distinguished
mathematician Courant proved in a general form, that we can de
fine all the eigenvectors and eigenvalues of any matrix A as the vec
t?rs that maximize x~ A x, in a certain sense, and their corresponding
eIgenvalues. That IS, we can define eigenvectors and eigenvalues
w;thout using the equation A x = (scalar) x; instead, we maximize
x Ax.

The conclusion is this. We can find the best position of the vector
u-the position in which it goes approximately through the centers
of the clusters-by finding the eigenvector corresponding to the
largest eigenvalue of M', which is often called the "principal" eigen
vector" of M'. Now the principal eigenvector of }vI' may be also
the principal eigenvector of M itself, because we can take the defini
tion of eigenvector

(b)(:3Fp:L. 86_36 mml UNCLASSIFIED

M'. When that is not the case, we could, of course, find the eigen
vectors of M' with a little more work, but actually this is unneces
sary. A different argument shows that it is still sufficient to find
the principal eigenvector of M itself.

How we go about calculating eigenvectors and eigenvalues of a
given matrix is an extensive question in itself. For the moment, we
can say simply that a good many methods are known, some of which
are better than others in particular situations. A survey for four of
the best methods for general use, and some special methods for use
in the National Security Agency, may be found in my paper on the
calculation of eigenvectors and eigenvalues.·

and multiply by M:
M u - su (where s is a scalar)

M' u ~ M (s u) ~ s (Mu) ~ s (8 u) = 8' u.

That is, every eigenvector of M is also an eigenvector of M', and each
has n eigenvectors, which are usually distinct. The eigenvalues of
M' are the squares of the eigenvalues of M. When the eigenvalues
of M are all positive, the algebraically largest one of M is also the
largest one of M', or rather its square is. The square of the principal
eigenvalue of M is also the principal eigenvalue of M' if some are
~legative, but the negative ones do not exceed the principal eigenvalue
In a~ol~te value. This last situation happens to be the one usually
reahzed III the cryptanalytic problem that gave rise to this discus:,ion
so it is sufficient to find the principal eigenvector of M instead of

:bi (3;-P.L. l,:'b-36'"Computation of Eigenvalues and E,:genvectors," Office of

Cryptology, 27 October 1962.
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